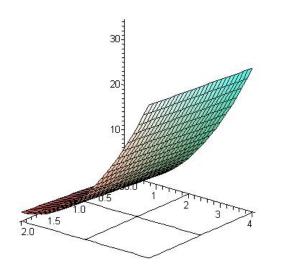
Close today:14.7Close Tue:15.1, 15.2Close Thur:15.3Office Hours Today:12:30-2:30pm (MSC)

15.1-15.2 Intro to double Integrals

Goal: Give a definition for the volume between a *given surface* and a *given region* on the *xy*-plane.

In all of ch. 15, you are given two things:

2.A region drawn on the *xy*-plane.



Example:

The volume under

$$z = f(x, y) = x + 2y^2$$

and above

 $R = [0,2] \times [0,4] = \{(x,y) : 0 \le x \le 2, 0 \le y \le 4\}$

- (a) Break the region R into m = 2 columns and n = 2 rows; 4 sub-regions;
- (a) Approx. using a rectangular box over each region (use *upper-right* endpts).

Formally, we define:

Quick application note:

$$\iint_{R} f(x,y) dA = \lim_{m,n\to\infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}, y_{ij}) \Delta A$$

the `signed' volume between $f(x,y)$ and the *xy*-plane over *R*.

If f(x,y) is above the xy-plane it is positive. If f(x,y) is below the xy-plane it is negative.

General Notes and Observations:

- z = f(x,y) = height on surface
- *R* = the region on the *xy*-plane

 $\Delta A = \text{area of base} = \Delta x \Delta y = \Delta y \Delta x$ f(x_{ij}, y_{ij}) ΔA = (height)(area of base) = volume of one approximating box Units of $\iint_R f(x, y) dA$ are (units of f(x,y))(units of x)(units of y)

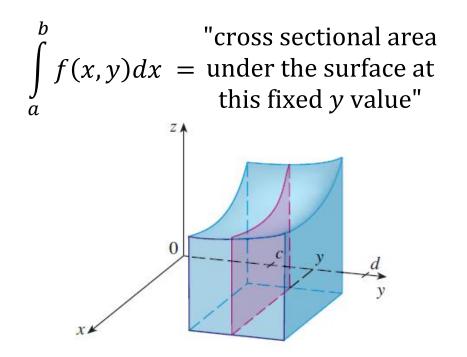
$$\iint_{R} 1 dA = "Area of R", and$$

Iterated Integrals

If you fix x: The area under this curve is

 $\int_{c}^{d} f(x,y)dy =$ "cross sectional area under the surface at this fixed x value"

If you fix y: The area under this curve



From Math 125,

$$\operatorname{Vol} = \int_{a}^{b} \operatorname{Area}(x) dx = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx \quad \operatorname{Vol} = \int_{c}^{d} \operatorname{Area}(y) dy = \int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy$$

Quick Example: Evaluate

$$(a)\int_{2}^{6}\left(\int_{1}^{8} y \, dx\right) dy$$

$$(b)\int_{2}^{6}\left(\int_{1}^{8}1\,dx\right)dy$$

Examples (like 15.2 HW):

1. Find the volume under

 $z = x + 2y^2$ and above $0 \le x \le 2$, $0 \le y \le 4$

$$2. \int_0^3 \int_0^1 2xy \sqrt{x^2 + y^2} dx dy$$

3. Find the double integral of

 $f(x, y) = y \cos(x + y)$ over the rectangular region

 $0 \le x \le \pi$, $0 \le y \le \pi/2$

15.2 Double Integrals over General Regions

For the rectangular region, R, given by

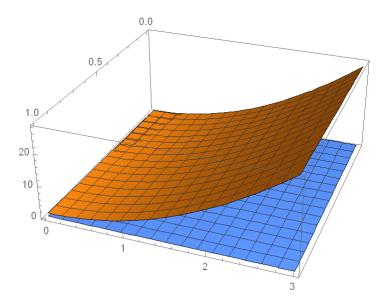
$$a \leq x \leq b$$
 , $c \leq y \leq d$ we learned:

$$\iint_{R} f(x,y) dA = \int_{a}^{b} \left(\int_{c}^{d} f(x,y) \, dy \right) dx$$
$$= \int_{c}^{d} \left(\int_{a}^{b} f(x,y) \, dx \right) dy$$

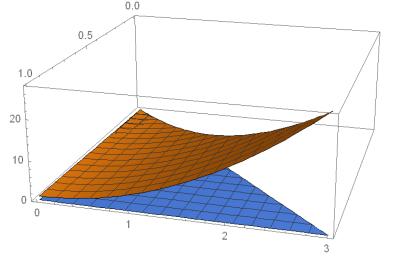
In 15.2, we discuss regions, *R*, other than rectangles.

Type 1 Regions	Type 2 Regions
(Top/Bot)	(Left/Right)
Given <i>x</i> in the range,	Given y in the range,
$a \le x \le b$, we have	$c \le y \le d$, we have
$g_1(x) \leq y \leq g_2(x)$	$h_1(y) \le x \le h_2(y)$
$b \left(\begin{array}{c} g_2(x) \\ c \end{array} \right)$	$\begin{pmatrix} d \\ c \end{pmatrix}$
$\int_{a}^{b} \left(\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) dy \right) dx$	$\int \int f(x,y) dx dy$
$a \setminus g_1(x)$	$c \ h_1(y) $

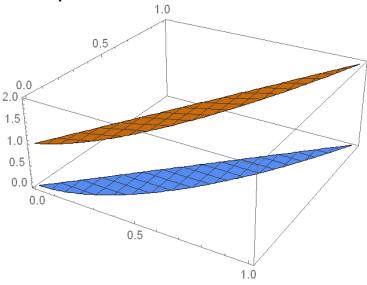
The surface $z = x + 3y^2$ over the rectangular region $R = [0,1] \times [0,3]$



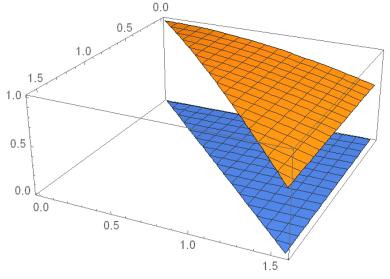
The surface $z = x + 3y^2$ over the triangular region with corners (x,y) = (0,0), (1,0), and (1,3).



The surface z = x + 1 over the region bounded by y = x and $y = x^2$.



The surface z = sin(y)/y over the triangular region with corners at (0,0), (0, $\pi/2$), ($\pi/2$, $\pi/2$).



Examples:

 Let D be the triangular region in the xy-plane with corners (0,0), (1,0), (1,3).

Evaluate
$$\iint_{D} x + 3y^2 dA$$

2. Find the volume of the solid bounded by the surfaces z = x + 1, $y = x^2$, y = 2x, z = 0.

3. Draw the region of integration for

$$\int_{0}^{\pi/2} \int_{x}^{\pi/2} \frac{\sin(y)}{y} \, dy \, dx$$

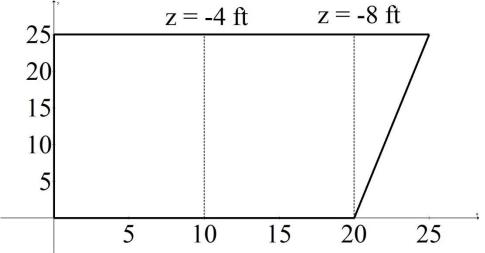
then switch the order of integration.

4. Switch the order of integration for

$$\int_{0}^{4} \int_{\sqrt{x}}^{2} \sin(y^3) \, dy \, dx$$

An applied problem:

Your swimming pool has the following shape (viewed from above)



The bottom of the pool is a plane with depths as indicated (the pool gets deeper in a linear way from left-to-right)

Solution:

 Describe the surface (what is z?): Slope in y-direction = 0 Slope in x-direction = -4/10 = -0.4 Also the plane goes through (0, 0, 0) Thus, the plane that describes the bottom of the pool is: z = -0.4x + 0y Describe the region in xy-plane: The line on the right goes through (20,0) and (25,25), so it has slope = 5 and it is given by the equation

y = 5(x-20) = 5x - 100

or x = (y+100)/5 = 1/5 y + 20The best way to describe this region is by thinking of it as a left-right region. On the left, we always have x = 0On the right, we always have x = 1/5 y + 20

Therefore, we have

$$\int_{0}^{25} \left(\int_{0}^{\frac{1}{5}y+20} -0.4 \, x \, dx \right) dy = -741.\,\overline{6} \, \text{ft}^3$$